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ABSTRACT

Alternatives to conventional dual-mode filter designs are

revealed by introducing an independent variable into a filter’s

coupling matrix through asequence ofplane rotation similarity

transformations. Agraphical means ofevaluating the resulting

alternatives is described. The procedure is demonstrated with

the design of an improved six-resonance longitudinal dual-

mode dielectric resonator fiiter without irises.

INTRODUCTION

Dual-mode filters play an important role in satellite

communications and are likely to perform an increasingly

important role in base stations. Dual-mode resonators can

exhibit higher unloaded Q’s than their single-mode

counterparts andoffer thepotential forsignificant reductionsirr

fikersize and cost. Yet, the conventional ‘longitudinal’ [1,2]

and ‘canonical’ [3,4] dual-mode filter implementations have

attributes that limit this potential and adversely influence filter

cost, size, isolation, insertion loss, and environmental stability.

Some of the undesirable attributes of longitudinal and

‘canonical asymmetric’ dual-mode designs (Fig. l(a), (b)) stem

from the relative magnitudes of two types of coupling which

occur between dual-mode resonances: “intra-coupling”

between orthogonal modes in an individual resonator, and
“inter-coupling’’b etweenp arallelm odes in adjacent resonators.

In conventional designs, one inter-coupling often differs

substantially from the other paired with it. Typically, these

inter-couplings are defined by irises, which increase filter cost

and loss. Dielectric resonator filters without irises (Fig. 2)

have been proposed [5]. But, their size can beexcessive, since

the smaller of the two inter-couplings between each pair of

adjacent resonators determines the distance between these

resonators. Also, a screw protruding into this inter-resonator

gap creates the larger inter-coupling. Disproportionate mter-

couplings lead to deep cavity penetmtions by these screws,

damaging filter performance due to screw loss, screw self-

resonance, and effects on the other, smaller, inter-coupling
sharing the same gap. Finally, intro-coupling is generdy

created by J screw driven toward a resonator’s ceramic.

Consequently, the conventionally large intra-couplings can

degrade filter stability and loss due to the close proximity of

tuning screws to the concentrated fields in the ceramics.
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Fig. 1. Coupling and signal-routing schematics for various 6’”

order dual-mode bandpass filters.
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Fig. 2. Longitudinal dual-mode dielectric resonator filter

without irises.
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Canonical symmetric designs (Fig. 1(c)) exhibit the opposite

coupling characteristics. They have large, balanced pairs of

inter-couplings, making elimination of irises practical [5,6].

Unfortunately, since input and output are coupled to the same

resonator, isolation is conventionally limited to 30 dB [5].

Also, disparity between intra-couplings results in different

coupling screw loading of the resonators - degrading stability.

Ideally, a design would exhibit only relatively large and

balanced pairs of inter-couplings, relatively small intra-

couplings, and an input and output coupled to different

resonators. Of these attributes, the first allows for small filter

size without irises, the second for more stable filter

characteristics, and the last for good input-to-output isolation.

Traditional versions of the design topologies of Fig. 1 lack at

least some of these attributes. By examining other electrically

equivalent filter designs, better alternatives might be found.

TRADITIONAL DESIGN TRANSFORMATIONS

Consider a chair observed from the side, the top, or from any

other point of view. It appears different from each viewpoint,

although it is still the same. Likewise, a single filter design

characteristic can be observed from different viewpoints, each

representing different, but equivalent, designs. Mathematical

transformations are a means of obtaining these different views.

o mO,l O 00000
ml,O O m,2 O ml,4 O m1,6 o
0 m2,1 O m2,3 O m2,5 O 0

m. 00 m3,2 O m3,4 O m3,6 o
0 m,l O m4,3 O m4,5 O 0
00 m5,2 O m5,4 O m5,6 o
0 m6,1 o m6,3 o m6,5 o m6,7
000000 m7,6 o

(a)

M1,2 = ml,z C2,4 – m1,4 S2,4

M1,4 = ml,4 CZ,4 c4,6 + ml,z S2,4 C4,6 – ml,6 S4,6

M1,6 = m],6 C4,6 + tn1,2 S2,4 S4,6 + m1,4 c2,4 S4,6

Mz,3 = m2,3 C2,4 C3,5 – m3,4 S2,4 C3,5 + ~,5 S2,4 S3,5 – mz,5 CZ,4 S3,

M2,5 = m2,3 CZ,4 S3,5 – m3,4 S2,4 S3,5 – t134,5 S2,4 C3,5 + mz,5 C2,4 C3,

M3,4 = mz,3 S7-,4C3,5C4,1j+ m3,4 CZ,4C3,5C4,6– n34,5CZ,4S3,5C4,,5

- mz,5 sz,4s3,5c4,,5– m3,b c3,5 s4,,5+ m5,fj s3,5s4,,5

M3,6 = m2,3 S2,4C3,5S4,S+ m3,4 CZ,4C3,5s4,b– W.5 CZ,4S3,5s4,s

M4,5 = m2,3 s2,4s3,5c4,6 + m3,4 c2,4 s3,5c4,6+ tn4,5 C2,4 C3,5 C4,6

+ m2,5 S2,4 C3,5 C4,6 – m3,6 S3,5 S4,6 – m5,6 C3,5 S4,6

M5,6 = m2,3 S2,4S3,5S4,fj+ m3,4 CZ,4S3,5S4,6+ W,5 CZ,4C3,5s4,b

+ mz,5 s~,,$c3,5 s4,G+ m3,b s3,5c4,G+ m5,~c3,5 c4,b

- mz,5 sz,4s3,5s4,b+ m3,c c3,5c4,b– m5,fj s3,5c4,,5

MO,l = mo,l , M47 = - mb,Ts4,tj , M&7 = mb,Tc4,rj

where

SX,Y= sin f3X,Y, C.,Y= cos EL,y, rmy = my,., and M.,y = My,x.

(b)

Fig. 3. The initial coupling matrix, (a), for a six resonance,

bandpass filter and the mapping, (b), of elements of m

to elements of M in terms of W@ 92,4, (33,5, and 04,6.

A filter comprised of N-2 resonances can be characterized by

an N x N coupling coefficient matrix, m. A method of

eliminating elements of any N x N matrix, m, while preserving

its defining characteristics, is to apply successive ‘orthogonal

similarity transformations’, or ‘plane rotation similarity

transformations’,

T
RIP, q] ● m ● %p, q]! (1)

where m is post-multiplied by an N x N ‘plane rotation

matrix’, R[p,ql, and pre-multiplied by its transpose [7].

(Rotation matrix R[p,ql is a modified identity matrix with a

rotation angle t3P,~,elements RP,P= Rq,q = cos Op,q,and elements
Rp,q = -~,p = sin Etp,q-- where subscripts p and q represent the

row and column indices, p or q # O or N-1, and p # q.)

Consequently, orthogonal similarity transformations can be

applied to convert an intial filter design, represented by m,

into other forms with equivalent characteristics. Procedures

have been demonstrated which convert initial filter designs

into canonical and longitudinal forms [1,8] and which

annihilate specific circuit couplings, generating other useful

circuit forms [9–12]. But, these conventional methods, airned

only at eliminating certain elements of m, provide no means of

examining the variety of alternative designs or guidance as to

whether certain coupling relationships are possible.

DESIGN SPACE TRANSFORMATIONS

To go beyond these limitations, sequences of plane rotation

similarity transformations were determined that map

conventional designs into ‘design spaces’ ranging over
independent variables. The rotation matrices are selected and

sequenced to ensure that some coefficients in the transformed

coupling matrix are functions of an independent rotation angle,

and that each undesirable coupling is a function of an
additional rotation angle, whose value is chosen to eliminate

the coupling. Alternative designs can be examined by plotting

the transformed couplings versus the independent angle.

For a reciprocal, six resonance filter with initial coupling

matrix, m, the transformed coupling matrix, M, is

M = R14,61T● RIZ,41T ● R13,51
T

“ 333 “ Rp,5] “ R,Z,4] ● R(4,,5]. (2)

This mapping is detailed in Fig. 3. Solving for either

longitudinal or canonical asymmetric designs (M2,5 = O),

Et3,5= tan”] [(~,5 tan[9z,4] - m2,5)/(m2,3 - m3,4 tan[13J,4])]. (3)

For longitudinal, pseudo-elliptic designs (m,ifj = (), ~,~ = ()),

there is the further requirement that e4,b = O. Alternatively, for

canonical asymmetric, elliptic designs (m~,b # O, MI,4 = O),

84,6 = tan”’ [(m~,4 Cos[e2,4] + tnl,2 sin[(&,4])/m~,b] (4)

Trwzsformation of elliptlc designs requires an additional

degree of freedom - m the form of an additional input and/or

output coupling [12] - that M4,7 provides.
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Alternative designs are discovered by inspecting an overlayed

graph of each coupling magnitude, IMX,J, with t32,4 ranging

over 180°. The couplings defied by a particular value of t32,4

correspond to the coupling magnitudes of a valid design. To

aid in comparing the attributes of alternative designs, the

definitions of various “figures of merit” (FOM) relating to

dual-mode dielectric resonator filters are proposed in Fig. 4.

DESIGN EXAMPLES

An unconventional, narrow-band, longitudinal, HEHII dual-

mode dielectric resonator fiiter without irises (Fig. 2) was

designed using the new technique. Equations (2) and (3) were

applied to transform the elements of an existing normalized

coupling matrix, m (Fig. 5), of a canonical symmetric filter

into a longitudinal fiiter design space, plotted in Fig. 6, where

the transformed coupling magnitudes are functions of 62,4. The

vertical lines, (a) and (b), of Fig. 6 indicate conventional and

alternative designs, respectively, which correspond to the

element values of coupling matrices M. and Mb in Fig. 5.

Alternative design, Mb, was constructed, and its measured

performance agrees well with theory, as shown in Fig. 7.

To demonstrate the transformation for canonical asymmetric

filters, equations (2), (3), and (4) were applied to

Pfitzenmaier’s elliptic design [3, 12]. The element values of

the initial, conventional, and alternative coupling matrices - m,

M,, and Mb, respectively - appear in Fig. 8, while the

corresponding design space plot appears in Fig. 9.

Figures of merit for conventional designs m and M., along

with those for alternative designs Mb, of Figs. 5 and 8 are

calculated in Table 1. In both cases, it is apparent that the

alternative design incorporates the best attributes of the

conventional designs, without their shortcomings. And,

although design Mb of Fig. 8 requires two output couplings, its

structure has become ahnost longitudinal (Mbfc,TJ << Mbf4,TJ =

Mb(o,l)), suggesting improved isolation over design M,.

CONCLUSIONS

An analytical method of transforming conventional filter

designs into a range of electrically equivalent designs has been

demonstrated - along with graphical means of inspecting the

resulting alternatives. Also, criteria that these transformations

must satisfy have been identified. And, although not all

discussed here, transformations for 4, 6, and 8 resonance filters

have been found. Use of the technique has led to the discovery

of alternate, six-resonance, dual-mode filter designs with

advantages over conventional designs. This technique is

applicable to any reciprocal filter having multiple signal paths.
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FOM,Z, = A measureinversely related to the design’s retative size.

= X,=l,0 ~{-1/(N to(l’’Mio gap, inter-coupling’’1/(2 .7l8 kJ))}

FOMno_,,,, = A measure of the realizability without rrises.

= N/ Z,=l to N{ l“ Max/Min gap, inter-coupling ratio”l}

FOMmbll,tY = A rough measure of the design’s environmental stability.
= 1 /(2 VMax irma-coupliug”l - ~Min intra-coupling”l )

Note N = number of inter-resonator gaps in the design.

k = Max l“Mio gap, inter-coupling”lof all designs being compared

FOM,,Z. is derived from an approximation of coupling as a function

of resonator spacing appearing in [13].

Fig. 4. Figures of merit for designs with dual-mode dielectric

resonators axially-oriented in a cut-off waveguide.

I Intra-eourdimn I

resonator ~ & ~

A m(l,6) = O M,(l,z) = 1.07539 Mb(l,z) = 0.25258

B m(z,s)= -0.18010 M,(3,4)= 0.74620 ktb(3,4)= 0.67232

c m(J,4) = 0.92630 Ma(5,,5)= 0.98298 Mb(s,q = 0.67232

Inter-couplings

~ & &

A @ B m(l,2) = 1,08181 M=(1,4) =--O.l 1767 Mb(l,4) =-1 .05191

A @ B m(s,.$,)= 0,98885 Ma(Z,3) = 0.89589 Mb(z,q = -1.05191

B @ C m(2,3) = 0,79454 M,(3,6) = -0.10756 Mt@,q = 0.72513

B @ C m(4,5) = 0,75006 M&(4,5)= 0.85141 Mb(4,5)= -0.72513

Input/Output Coupliugs

~ L%& N&

A m(o,l) = 1,09215 Ma(o,]) = 1.09215 Mb(o,]) = 1.09215

A m(6,7)= o.99539
c Ma(,57)= 0.99539 h’fb@,T)= 0.99539

Fig. 5. Normalized couplings for three electrically equivalent

filter designs: canonical symmetric (m), conventional

longitudinal (M,), and alternative longitudinal (Mb).

Design Space Plot for Longitudinal Filter
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Fig. 6. (a) Conventional design, M., at e2,4 = 173.756”+1 80°.

(b) Alternative design, Mb, at EJ2,4= 76.498°.

Short dashes are A-B inter-couplings, long dashes are

B-C inter-couplings, and solid lines are intra-couplings.
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